Importance of cytoskeletal elements in volume regulatory responses of trout hepatocytes.
نویسندگان
چکیده
The role of cytoskeletal elements in volume regulation was studied in trout hepatocytes by investigating changes in F-actin distribution during anisotonic exposure and assessing the impact of cytoskeleton disruption on volume regulatory responses. Hypotonic challenge caused a significant decrease in the ratio of cortical to cytoplasmic F-actin, whereas this ratio was unaffected in hypertonic saline. Disruption of microfilaments with cytochalasin B (CB) or cytochalasin D significantly slowed volume recovery following hypo- and hypertonic exposure in both attached and suspended cells. The decrease of net proton release and the intracellular acidification elicited by hypotonicity were unaltered by CB, whereas the increase of proton release in hypertonic saline was dramatically reduced. Because amiloride almost completely blocked the hypertonic increase of proton release and cytoskeleton disruption diminished the associated increase of intracellular pH (pH(i)), we suggest that F-actin disruption affected Na(+)/H(+) exchanger activity. In line with this, pH(i) recovery after an ammonium prepulse was significantly inhibited in CB-treated cells. The increase of cytosolic Na(+) under hypertonic conditions was not diminished but, rather, enhanced by F-actin disruption, presumably due to inhibited Na(+)-K(+)-ATPase activity and stimulated Na(+) channel activity. The elevation of cytosolic Ca(2+) in hypertonic medium was significantly reduced by CB. Altogether, our results indicate that the F-actin network is of crucial importance in the cellular responses to anisotonic conditions, possibly via interaction with the activity of ion transporters and with signalling cascades responsible for their activation. Disruption of microtubules with colchicine had no effect on any of the parameters investigated.
منابع مشابه
Metabolic and ionic responses of trout hepatocytes to anisosmotic exposure.
Trout hepatocytes exposed to hypo- or hyperosmotic conditions respond by swelling and shrinking, respectively, followed by regulatory volume changes that almost, although not completely, restore cell volume. These anisosmotic conditions have a significant impact on metabolic functions. In hyposmotic medium, oxygen consumption (.VO2) and glucose production rates were significantly reduced, where...
متن کاملEffects of extracellular nucleotides and their hydrolysis products on regulatory volume decrease of trout hepatocytes.
In trout hepatocytes, hypotonic swelling is followed by a compensatory shrinkage called regulatory volume decrease (RVD). It has been postulated that extracellular ATP and other nucleotides may interact with type 2 receptors (P(2)) to modulate this response. In addition, specific ectoenzymes hydrolyze ATP sequentially down to adenosine, which may bind to type 1 receptors (P(1)) and also influen...
متن کاملVolumetric and ionic responses of goldfish hepatocytes to anisotonic exposure and energetic limitation.
The relationship between cell volume and K(+) transmembrane fluxes of goldfish (Carassius auratus) hepatocytes exposed to anisotonic conditions or energetic limitation was studied and compared with the response of hepatocytes from trout (Oncorhynchus mykiss) and rat (Rattus rattus). Cell volume was studied by video- and fluorescence microscopy, while K(+) fluxes were assessed by measuring unidi...
متن کاملGlucocorticoid-mediated attenuation of the hsp70 response in trout hepatocytes involves the proteasome.
The physiological implication of elevated cortisol levels on cellular heat-shock protein 70 (hsp70) response was examined using primary cultures of rainbow trout (Oncorhynchus mykiss) hepatocytes. Trout hepatocytes treated with cortisol, the predominant glucocorticoid in teleosts, responded to the heat shock (+15 degrees C for 1 h) with a significant drop in hsp70 accumulation over a 24-h recov...
متن کاملRegulatory effects of cis- and trans-LncRNAs on differential expression of genes following infection with viral hemorrhagic septicemia virus in rainbow trout (Oncorhynchus mykiss)
In this study the cis and trans regulatory effect of long non-coding genes (lncRNA) on the expression of genes in fish infected by Viral hemorrhagic septicemia virus (VHS) was investigated using RNA-seq technology. At the end of experimental period (the thirty fifth day), total RNA was extracted from spleen tissue (group treated with virus) and physiological serum (control group) was used to pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 289 3 شماره
صفحات -
تاریخ انتشار 2005